Global Optimization Methods for the Aerodynamic Shape Design of Transonic Cascades
نویسنده
چکیده
Two global optimization algorithms, namely Genetic Algorithm (GA) and Simulated Annealing (SA), have been applied to the aerodynamic shape optimization of transonic cascades; the objective being the redesign of an existing turbomachine airfoil to improve its performance by minimizing the total pressure loss while satisfying a number of constraints. This is accomplished by modifying the blade camber line; keeping the same blade thickness distribution, mass flow rate and the same flow turning. The objective is calculated based on an Euler solver and the blade camber line is represented with non-uniform rational B-splines (NURBS). The SA and GA methods were first assessed for known test functions and their performance in optimizing the blade shape for minimum loss is then demonstrated on a transonic turbine cascade where it is shown to produce a significant reduction in total pressure loss by eliminating the passage shock.
منابع مشابه
Aerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملThe Effects of Shape Parameterization on the Efficiency of Evolutionary Design Optimization for Viscous Transonic Airfoils
The effect of airfoil shape parameterization on optimum design and its influence on the convergence of the evolutionary optimization process is presented. Three popular airfoil parametric methods including PARSEC, Sobieczky and B-Spline (Bezier curve) are studied and their efficiency and results are compared with those of a new method. The new method takes into consideration the characteristics...
متن کاملEfficient Aerodynamic Optimization Using a Multiobjective Optimization Based Framework to Balance the Exploration and Exploitation
In many aerospace engineering design problems, objective function evaluations can be extremely computationally expensive, such as the optimal design of the aerodynamic shape of an airfoil using high-fidelity computational fluid dynamics (CFD) simulation. A widely used approach for dealing with expensive optimization is to use cheap global surrogate (approximation) models to substitute expensive...
متن کاملAerodynamic Wing Optimization via Evolutionary Algorithms Based on Structured Coding
Abstract Evolutionary Algorithms (EAs) based on structured coding have been proposed for aerodynamic optimization of wing design. Fractional factorial design is used to investigate interactions of the design variables to determine the appropriate coding structure for EAs in advance. The present EAs is applied to wing design problems where the wing shape is modeled using the parameter set for th...
متن کاملTransonic Wing Shape Optimization Based on Evolutionary Algorithms
A practical three-dimensional shape optimization for aerodynamic design of a transonic wing has been performed using Evolutionary Algorithms (EAs). Because EAs coupled with aerodynamic function evaluations require enormous computational time, Numerical Wind Tunnel (NWT) located at National Aerospace Laboratory in Japan has been utilized based on the simple master-slave concept. Parallel process...
متن کامل